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1 Introduction

Since the famous discovery of Brezin, Itzykson, Parisi and Zuber [7], it has been known and

widely used, that formal matrix integrals are generating functions for the enumeration of

discrete surfaces of given topologies (the role of topology was first noticed by ’t Hooft [35]).

The 1-matrix model is known to count discrete surfaces obtained by gluing polygonal

pieces side by side. It is the partition function of random discrete surfaces [7, 13], also

called random “maps”.

Other matrix models are also partition functions of random discrete surfaces, with

additional “colors” on the faces [13, 23].

In particular, the “2-matrix model” is a partition function of random discrete surfaces,

whose polygonal pieces can have two possible colors (or say, two possible spins + or -),

and surfaces are counted according to the number of edges separating polygons of different

colors, that is polygons with different spins. Thus it counts surfaces with a weight pro-

portional to the exponential of
∑

<i,j> σiσj (where the sum is over pairs of neighboring

pieces, and σi is the spin of the piece i). In other words this is an Ising model on a random

discrete surface [28].

The most natural generalization is the “Chain of matrices” matrix model. It is the gen-

erating function for counting discrete surfaces, where pieces can have a color i ∈ [1, . . . , n],

and where each spin configuration on the surface is weighted by
∏

<i,j>(C−1)i,j where C

is a Toeplitz matrix of the form:

C =












g
(1)
2 −c1,2 0

−c1,2 g
(2)
2 −c2,3

. . .
. . .

. . .
. . .

. . . −cn−1,n

0 −cn−1,n g
(n)
2












(1.1)

The partition function for the chain of matrices is the formal small T expansion of the

following matrix integral:

Z =

∫

dM1 . . . dMn e−
N
T

tr(
Pn

i=1 Vi(Mi)−
Pn−1

i=1 ci,i+1MiMi+1) (1.2)

where V ′
i (0) = 0 and V ′′

i (0) = g
(i)
2 :

Vi(x) =
g
(i)
2

2
x2 +

di+1∑

k=3

g
(i)
k

k
xk (1.3)

It is a formal series in T , such that

ln Z =
∞∑

g=0

(
N

T

)2−2g

Fg (1.4)

where:

Fg =
∑

v

T v
∑

S∈Mg(v)

1

#Aut(S)

∏

i,k

(−g
(i)
k )ni,k(S)

∏

<i,j>

(
(C−1)i,j

)nedges<i,j>(S)
(1.5)

– 2 –
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where Mg(v) is the set of all connected orientable discrete surfaces of genus g with v

vertices, with ni,k polygonal pieces of size k (i.e. k−angles) of color i, and nedges<i,j> edges

separating colors i and j, and #Aut is the number of automorphisms of the surface. Notice

that for fixed g and v, Mg(v) is a finite set, and therefore Fg is indeed a formal series in T .

One may also be interested in discrete surfaces with m marked faces, whose generating

function is given by:

〈

tr

(
1

x1 − Mi1

)

. . . tr

(
1

xm − Mim

)〉

c

=

∞∑

g=0

(
N

T

)2−2g−m

W
(g)
i1,...,im

(x1, . . . , xm) (1.6)

W
(g)
i1,...,im

(x1, . . . , xm) =
∑

S∈Mg,i1,...,im

T#vertices(S)

#Aut(S)

∏

i,k(−g
(i)
k )ni,k(S)

∏m
k=1 x

lik (S)+1

k

∏

<i,j>

(
(G2

−1)i,j
)nedges<i,j>(S)

(1.7)

where Mg,i1,...,im is the set of all connected discrete surfaces of genus g, with ni,k k−angles

of color i, and nedges<i,j> edges separating colors i and j, and with m marked faces (and

with one marked edge on each marked face), of respective perimeters l1, . . . , lm, and colors

i1, . . . , im. Again, for fixed m and g, there are finitely many such surfaces with a given

number of vertices, and the sum is a formal power series in T . Notice that if there is only

one marked face m = 1, i.e. one marked edge, we have a rooted map, and #Aut(S) = 1.

Recently, the computation of the Fg’s and W (g)’s was completed for the 1-matrix model

(n = 1) in [8, 16], and 2-matrix model (n = 2) [9, 18, 19], and our goal is to extend the

method of [19] to the chain of matrices of arbitrary (but finite) length n ≥ 1.

In fact, the method of [19] allows to find the solution for a generalization of the

chain of matrices, where in addition, the last matrix is coupled to a fixed matrix Mn+1,

called external field. Matrix models with external fields also have some combinatorial

interpretations, and have been studied for various applications. The most famous is the

Kontsevich integral, which is the generating function for intersection numbers [19, 24, 33].

Here, we solve this more general model.

Multimatrix model also play an important role in quantum gravity and string theory,

where they play the role of a regularized discrete space-time. The 1-matrix model, counts

discrete surfaces without color, and is a model for quantum gravity without matter, whereas

the chain of matrices counts discrete surfaces with n colors, and is interpreted as a model

of quantum gravity with some matter field [1, 10, 13, 27, 29, 30], namely a matter which

can have n possible states. More recently, matrix models have played a role in topological

string theory [12].

Outline of the article.

• In section 2 we introduce all the definitions and notations necessary for the derivation

of the loop equations. These are quite clearly inspired by the work on [15] where the

loop equations were already found in a slightly less compact way.

• In section 3 we derive the master loop equation that will allow us to solve the model.

We also consider the 1
N2 expansion here and find the spectral curve for this model.

– 3 –



J
H
E
P
0
7
(
2
0
0
9
)
0
9
6

• In section 4 we overview all the important algebraic geometry tools and the algebraic

curve properties that are relevant for us.

• In section 5 we apply the same techniques of [9] to prove uniqueness of the solution

and to find the actual solution for the correlators of the first matrix M1 of the chain.

• In section 6 we find the variation of the curve, and all the correlation functions, in

terms of the moduli of the chain of matrices. This leads us to an expression for the

whole topological expansion of the free energy for the chain of matrices.

• In section 7, we study some corollaries of the properties of the symplectic invariants

of [19], in particular we get the double scaling limit, and modular properties.

• In section 8, we briefly discuss the “matrix quantum mechanics”, i.e. the limit of an

infinite chain of matrices.

• Finally, section 9 is the conclusion.

2 Notations and definitions

2.1 The formal chain matrix model with external field

The formal chain matrix model with external field, is a formal matrix integral,1 with n

matrices of size N with potentials Vi(Mi), arranged in a chain with Itzykson-Zuber like

interactions:

ZCh =

∫ n∏

i=1

dMi e
−N

T
tr(

Pn
i=1(Vi(Mi)−ci,i+1MiMi+1)) (2.1)

where Mn+1 is a constant matrix, which we may choose diagonal Mn+1 = Λ , with s

different eigenvalues λi and multiplicities li (
∑

i li = N):

Λ = diag(λ1, · · · , λ1
︸ ︷︷ ︸

l1

, · · · , λi, · · · , λi
︸ ︷︷ ︸

li

, · · · , λs, · · · , λs
︸ ︷︷ ︸

ls

). (2.2)

It reduces to the usual “Chain of Matrices” when Λ = Mn+1 = 0.

The measures dMi =
∏N

j=1 dM
(i)
jj

∏N
j<k dℜ(M

(i)
jk )dℑ(M

(i)
jk ) are the usual Lebesgue mea-

sures for hermitian matrices. The potentials Vi(x) are polynomials2 of degree di + 1,

Vi(x) =

di+1∑

k=1

g
(i)
k

k
xk (2.3)

but the same results contained in this paper can clearly be extended to functions Vi whose

derivatives V ′
i are rational functions. In general we are interested in formal expectation

1A formal integral is defined as the exchange of the integral and the Taylor expansion of the exponential

of non-quadratic terms in the potentials, see [23].
2Notice that here, in contrast to equation (1.3), we allow for a linear term in the potential. This is

convenient but can be trivially undone by a shifts proportional to the identity.

– 4 –
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values of functions of Mi defined by

〈f(M1, · · · ,Mn)〉 =
1

ZCh

∫ n∏

i=1

dMi f(M1, · · · ,Mn) e−
N
T

tr(
Pn

i=1(Vi(Mi)−ci,i+1MiMi+1)) (2.4)

but we will also be interested in the free energy defined as the logarithm of the partition

function ZCh.

The 1
N2 expansion can be considered when we work with the formal version of this

matrix integral. What that means is that we must interpret the integrals as a formal

expansion of all the non-gaussian terms in the exponential and perform the integral as a

perturbation integral around a minimum of the action

tr

(
∑

i

Vi(Mi) −
∑

i

ci,i+1MiMi+1

)

. (2.5)

The equations that define a minimum are

V ′
1(M1) = c1,2M2 , V ′

k(Mk) = ck−1,kMk−1 + ck,k+1Mk+1 k ≥ 2 (2.6)

In particular we can choose a minimum such that all Mk’s are diagonal Mk =

diag(µ̄
(k)
1 , . . . , µ̄

(k)
N ), which satisfy:

V ′
1(µ̄

(1)
i ) = c1,2µ̄

(2)
i

V ′
k(µ̄

(k)
i ) = ck−1,kµ̄

(k−1)
i + ck,k+1µ̄

(k+1)
i k = 2, · · · , n

(2.7)

with µ̄
(n+1)
i = µ

(n+1)
i = Λi. Note that cn,n+1 can be absorbed into Λ, so that we will fix

it to 1. These equations have D = d1d2 · · · dns solutions. Choosing which minimum we

are going to perturb around, means choosing how many eigenvalues we are going to put

on each of the D different solutions. Let us call these n1, · · · , nD, with the restriction
∑

i ni = N . In the following we are going to refer to ǫi = T ni

N as the filling fractions.

In other words, for each choice of filling fractions ǫ = (ǫ1, . . . , ǫD−1), we can define a

formal integral by perturbation around the corresponding minimum. Almost by definition,

there must exist anti-clockwise contours Ai, i = 1, . . . ,D, such that

−
T

2iπ N

∮

Ai

〈

tr

(
1

x − M1

)〉

dx = ǫi = T
ni

N
(2.8)

2.2 Definitions of correlation functions

In order to define the good observables of our model, we first need to introduce (like in [15])

the following polynomials fi,j(x1, . . . , xn)

fi,j(xi, · · · , xj) =

j
∏

k=i

1

ck−1,k
det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

V ′
i (xi) −ci,i+1xi+1 0

−ci,i+1xi V
′
i+1(xi+1)

. . .
. . .

. . . −cj,j+1xj

0 −cj,j+1xj−1 V ′
j (xj)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

if i ≤ j

= 1 if i = j + 1

= 0 if i > j + 1

(2.9)

– 5 –
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They satisfy the recursion relation

ci−1,ifi,j(xi, . . . , xj) = V ′
i (xi)fi+1,j(xi+1, . . . , xj) − ci,i+1xixi+1fi+2,j(xi+2, . . . , xj) (2.10)

with the initial conditions fk+1,k = 1, and fk+l,k = 0 for all l > 1. The first polynomials

generated by this recursion relation are

fi,i(xi) =
V ′

i (xi)

ci−1,i

fi−1,i(xi−1, xi) =
V ′

i−1(xi−1)

ci−2,i−1

V ′
i (xi)

ci−1,i
−

ci−1,i

ci−2,i−1
xi−1xi

fi−2,i(xi−2, xi−1, xi) =
V ′

i−2(xi−2)

ci−3,i−2

V ′
i−1(xi−1)

ci−2,i−1

V ′
i (xi)

ci−1,i

−
V ′

i−2(xi−2)

ci−3,i−2

ci−1,i

ci−2,i−1
xi−1xi −

ci−2,i−1

ci−3,i−2
xi−2xi−1

V ′
i (xi)

ci−1,i

(2.11)

Define also the following functions

wi(xi) =
1

xi − Mi
, Q(z) =

1

cn,n+1

S(z) − S(Λ)

z − Λ
(2.12)

where S(z) is the minimal polynomial of Λ:

S(z) =
s∏

i=1

(z − λi) (2.13)

The loop equations in following sections will be written in terms of the following matrix

model observables or correlation functions.

W0(x1) =

〈
T

N
tr (w1(x1))

〉

P (x1) = Pol
x1

f1,1(x1)W0(x1) = Pol
x1

V ′
1(x1)W0(x1)

Wi(x1, xi, . . . , xn, z) = Pol
xi,...,xn

fi,n(xi, . . . , xn)

〈
T

N
tr (w1(x1)wi(xi) · · ·wn(xn)Q(z))

〉

,

for i = 2, . . . , n − 1

W1(x1, . . . , xn, z) = Pol
x1,...,xn

f1,n(x1, . . . , xn)

〈
T

N
tr (w1(x1) · · ·wn(xn)Q(z))

〉

→ is a polynomial in all variables

Wn(x1, z) =

〈
T

N
tr (w1(x1)Q(z))

〉

W0;1(x1;x
′
1) =

∂

∂V1(x
′
1)

W0(x1) =
〈
tr (w1(x1)) tr

(
w1(x

′
1)
)〉

c

Wi;1(x1, xi, . . . , xn, z;x′
1) =

∂

∂V1(x′
1)

Wi(x1, xi, . . . , xn, z) =

=

〈

tr
(
w1(x

′
1)
)

Pol
xi,...,xn

fi,n(xi, . . . , xn)tr (w1(x1)wi(xi) · · ·wn(xn)Q(z))

〉

c

(2.14)

– 6 –
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where the symbol “Polx f(x)” represents the polynomial part on the variable x in the

vicinity of ∞ of the function “f(x)”, and the loop insertion operator simbol is defined by

∂

∂Vi(x)
= −

1

x

∂

∂g
(i)
0

−
∑

k

k

xk+1

∂

∂g
(i)
k

(2.15)

like in [15]. At some point we will write the topological expansion3 of some of these

functions, for example

W0(x1) =
∞∑

h=0

(
T

N

)2h

W
(h)
0 (x1), (2.16)

and similarly for other functions. These are all the definitions we need for the derivation

of the loop equations

3 Master loop equation

To find the master loop equation (proceeding as in [15]) we are going to consider the

following local changes of variables

δMi = ǫ Pol
xi+1,...,xn

fi+1,n(xi+1, . . . , xn)wi+1(xi+1) · · ·wn(xn)Q(z)w1(x1) + O(ǫ2), 1 ≤ i < n

δMn = ǫQ(z)w1(x1) + O(ǫ2)

(3.1)

with ǫ a small parameter. Notice that δMi does not contain Mi except for i = 1. We must

then consider δM1 separately.

3.1 Loop equation for δM1

Consider the change of variables

δM1 = ǫ Pol
x2,...,xn

f2,n(x2, . . . , xn)w2(x2) · · ·wn(xn)Q(z)w1(x1) + O(ǫ2) (3.2)

The first order variation in ǫ of the integral (2.1) gives the Schwinger-Dyson equation

(called loop equation in the matrix model context):

〈
T 2

N2
tr (w1(x1)) tr

(

w1(x1) Pol
x2,...,xn

f2,n(x2, . . . , xn)w2(x2) · · ·wn(xn)Q(z)

)〉

=

〈
T

N
tr

(

w1(x1)
(
V ′

1(M1) − c1,2M2

)
Pol

x2,...,xn

f2,n(x2, . . . , xn)w2(x2) · · ·wn(xn)Q(z)

)〉

(3.3)

3The topological expansion of a formal integral, is not a large N expansion, it is a small T expansion,

and for each power of T , the coefficient is a polynomial in N−2. The W
(h)
0 (x) is merely the formal series in

T , containing the degree h terms.

– 7 –
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Using (2.10) we find, after some algebra, the loop equation

T 2

N2
W2;1(x1, x2, . . . , xn, z;x1) + (c1,2x2 − V ′

1(x1) + W0(x1))W2(x1, x2, . . . , xn, z) =

= −W1(x1, . . . , xn, z)+(V ′
2(x2)−c1,2x1)W3(x1, x3, . . . , xn, z)−c2,3x2W4(x1, x4, . . . , xn, z)

−

〈
T

N
tr

(

w1(x1)
(
V ′

2(M2) − c1,2M1

)
Pol

x3,...,xn

f3,n(x3, . . . , xn)w3(x3) · · ·wn(xn)Q(z)

)〉

+

〈
T

N
tr

(

w1(x1)c2,3M2 Pol
x4,...,xn

f4,n(x4, . . . , xn)w4(x4) · · ·wn(xn)Q(z)

)〉

(3.4)

3.2 Loop equation for δMi

The rest of the loop equations follow the same principle. We will compute the remaining

in one shot.

δMi = ǫ Pol
xi+1,...,xn

fi+1,n(xi+1, . . . , xn)wi+1(xi+1) · · ·wn(xn)Q(z)w1(x1) + O(ǫ2) (3.5)

from which the order ǫ variation of the partition function is

0 =

〈
T

N
tr

(

w1(x1) (V ′

i (Mi) − ci−1,iMi−1) Pol
xi+1,xn

fi+1,n(xi+1, . . . , xn)wi+1(xi+1) · · ·wn(xn)Q(z)

)〉

−ci,i+1xi+1Wi+1(x1, xi+1, . . . , xn, z) + V ′

i+1(xi+1)Wi+2(x1, xi+2, . . . , xn, z)

−ci,i+1xi+1Wi+3(x1, xi+3, . . . , xn, z)

−

〈
T

N
tr

(

w1(x1)V
′

i (Mi) Pol
xi+2,...,xn

fi+2,n(xi+2, . . . , xn)wi+2(xi+2) · · ·wn(xn)Q(z)

)〉

+

〈
T

N
tr

(

w1(x1)ci,i+1Mi+1 Pol
xi+3,...,xn

fi+3,n(xi+3, . . . , xn)wi+3(xi+3) · · ·wn(xn)Q(z)

)〉

(3.6)

In particular, for i = n due to the fact that fn+2,n = fn+3,n = 0 we have

0 =

〈
T

N
tr
(
w1(x1)

(
V ′

n(Mn) − cn−1,nMn−1

)
Q(z)

)
〉

− cn,n+1zWn+1(x1, z) + S(z)W0(x1)

(3.7)

3.3 Master loop equation

When we sum up equations (3.4) and (3.6) for i = 2, . . . , n we find the master loop equation

T 2

N2
W2;1(x1, x2, . . . , xn, xn+1; x1)+(c1,2x2−V ′

1(x1)+W0(x1)) (W2(x1, x2, . . . , xn, xn+1)−S(xn+1))=

= −W1(x1, . . . , xn, xn+1) + (V ′

1 (x1) − c1,2x2)S(xn+1)

+

n∑

i=2

(V ′

i (xi) − ci−1,ixi−1 − ci,i+1xi+1)Wi+1(x1, xi+1, . . . , xn+1) (3.8)

where we have redefined z ≡ xn+1. Remember that W1(x1, · · · , xn) is a polynomial in

all its variables and that Wi(x1, xi, · · · , xn) is a polynomial in all its variables except x1.

In particular, we may choose xi = x̂i(x1, x2), i = 3, . . . , n such that

V ′
i (xi) = ci−1,ixi−1 + ci,i+1xi+1 , ∀i = 2, . . . , n (3.9)
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and in that case (3.8) reduces to

T 2

N2
Ŵ2;1(x1, x2;x1)+(c1,2x2−Y (x1))Û (x1, x2) = − Ŵ1(x1, x2)+(V ′

1(x1) − c1,2x2)Ŝ(x1, x2)

=Ê(x1, x2)

(3.10)

where we have defined

Y (x1) = V ′
1(x1) − W0(x1)

Û(x1, x2) = W2(x1, x2, x̂3, . . . , x̂n+1) − S(x̂n+1)

Ŵ2;1(x1, x2;x1) = W2;1(x1, x2, x̂3, . . . , x̂n+1;x1)

Ŵ1(x1, x2) = W1(x1, x2, x̂3, . . . , x̂n+1)

Ŝ(x1, x2) = S(x̂n+1)

(3.11)

and x̂i are defined recursively from the constraints (3.9)

c2,3x̂3 = c2,3x̂3(x1, x2) = V ′
2(x2) − c1,2x1

c3,4x̂4 = c3,4x̂4(x1, x2) = V ′
3(x̂3(x1, x2)) − c2,3x2

ci−1,ix̂i = ci−1,ix̂i(x1, x2) = V ′
i−1(x̂i−1(x1, x2)) − ci−2,i−1x̂i−2(x1, x2) , for i > 4

(3.12)

Note the resemblance between equations (3.9) and (2.7).

3.4 Planar limit

To leading order at large N , we drop the T 2/N2 term in the loop equation (3.10) and we get:

(c1,2x2 − Y (0)(x1))Û
(0)(x1, x2) = Ê(0)(x1, x2) (3.13)

Notice that Ê(0)(x1, x2) is a polynomial in its 2 variables x1 and x2.

The algebraic equation

Ê(0)(x1, x2) = 0 (3.14)

is called the spectral curve. In some sense it is the large N limit of the loop equation when

we choose c1,2x2 = Y (0)(x1).

The equation (3.10) is of the same form as the one solved in [9] for the 2-matrix model,

or the one solved in [19] for the 1-matrix model with external field. It can thus be solved

using the same methods. Note that (as we said above) we consider fixed filling fractions in

the formal model, which means that the

ǫi = −
1

2iπ

∮

Ai

W
(0)
0 (x1(p))dx1(p) (3.15)

are fixed data of the model. As a consequence of that, all the differentials W
(h)
0 (x1(p))dx1(p)

with h ≥ 1 may have poles only at the branch points αi, and all their A cycles integrals

are zero due to the fixed filling fractions condition

0 =

∮

Ai

W
(h)
0 (x1(p))dx1(p). (3.16)
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4 Algebraic geometry of the spectral curve

The solution of the model relies on the understanding of the underlying large N spectral

curve, and its algebraic-geometry properties. Let us see first what are the main features of

Ê(0)(x1, x2) and then we will present a set of tools and concepts that we will need later.

First, Ê(0)(x1, x2) = −W
(0)
1 (x1, x2, x̂3, . . . , x̂n+1)+(V ′

1(x1)−c1,2x2)S(x̂n+1) as we have

noted before, is a polynomial in all its variables. W
(0)
1 is a polynomial of degree di − 1

in the variable xi and s − 1 in z while (V ′
1(x1) − c1,2x2)S(xn+1) is clearly a polynomial of

degree d1 in x1, 1 in x2 and s in z = xn+1.

The relations (3.12) express x̂i (i ≥ 3) as a polynomial of x1 and x2. For example,

x̂3(x1, x2) is a polynomial of degree 1 in x1 and d2 in x2. In general, for i > 3, x̂i(x1, x2) a

polynomial of degree
∏i−1

j=3 dj in x1 and
∏i−1

j=2 dj in x2.

With this information we see that for n > 1, Ŵ
(0)
1 (x1, x2) is a polynomial of degree

d1 + d3 . . . dns − 2 in x1 and a polynomial of degree d2 · · · dns − 1 in x2, while (V ′
1(x1) −

c1,2x2)S(x̂n+1) is a polynomial of degree d1 +d3 . . . dn s in x1 and 1+d2d3 . . . dn s in x2, i.e.

degx1
Ê(0) = d1 + d3 . . . dn s = d1 + D1 , degx2

Ê(0) = 1 + d2d3 . . . dn s = 1 + D2 (4.1)

One can check from algebraic geometry usual methods (Newton’s polytope for instance),

that an algebraic curve with those degrees, has a genus g:

g < d1d2 . . . dn s (4.2)

So far, most of the coefficients of Ê(0) are not known, because they come from

the unknown polynomial W1. However, the number of unknown coefficients of W1, is

d1d2 . . . dn s − 1, and it matches precisely the generic genus of the spectral curve g (all the

terms of W1 lie in the interior of Newton’s polytope), and therefore the polynomial W1 (and

thus Ê(0)) is entirely determined by the filling fraction conditions (we have
∑

i ǫi = T ):

∀i = 1, . . . , d1d2 . . . dn s, ǫi =
1

2iπ

∮

Ai

Y (x)dx , Ê(0)(x, Y (x)) = 0 (4.3)

Those d1d2 . . . dn s equations determine W
(0)
1 and thus Ê(0).

4.1 Analytical structure, sheets and poles

The algebraic curve Ê(0)(x1, x2) = 0 has the following structure. For each value of x1 there

are D2 +1 different values of x2, and for every value of x2 we find D1+d1 values of x1. This

observation is what defines, respectively, the x1 sheet structure and the x2 sheet structure.

The algebraic curve Ê(0)(x1, x2) = 0 can be parametrized as follows: there exists a

compact Riemann surface L and two meromorphic functions x1 and x2 on L, such that

Ê(0)(x1, x2) = 0 ⇔ ∃p ∈ L | x1 = x1(p) and x2 = x2(p) (4.4)

Notice that the functions xi(p) = x̂i(x1(p), x2(p)) are also meromorphic functions on L,

which satisfy:

∀ p ∈ L , V ′
i (xi(p)) = ci−1,ixi−1(p) + ci,i+1xi+1(p) (4.5)
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There are s + 1 different points on the curve where x1 (and all the other xi(p), i ≤ n)

becomes infinite. Around one of these points, that we will call p = ∞, a good local

coordinate is z∞(p) = 1
x1(p) . The ∞ point in the curve is quite important as it marks

the so called physical sheet. The other “infinity” points correspond to the situation where

xn+1(p) = λi, and will be called p = λ̂i. A good local coordinate around these points

is zλ̂i
(p) = 1

xn(p) (a different good local coordinate could be zλ̂i
(p) = xn+1(p) − λi which

behaves as ∼p→λi

1
cn,n+1

T li
N

1
xn(p)). Explicitly, the negative divisor of xk(p) is

[xk(p)]− = −rk∞− sk

∑

i

λ̂i

where r1 = 1, rk = d1d2 . . . dk−1

sn+1 = 0, sn = 1, sk = dk+1dk+2 . . . dn

(4.6)

Locally, near ∞ we have:

x2(p) =
p→∞

V ′
1(x1(p))

c1,2
−

T

x1(p)
+ O

(
x1(p)−2

)
(4.7)

xk(p) ∼
p→∞

x1(p)rk

and near λ̂i:

xn(p) =
p→λi

1

cn,n+1

T li
N

1

xn+1(p) − λi
+ O (1)

xn+1(p) =
p→λi

λi +
1

cn,n+1

T li
N

1

xn(p)
+ O

(
xn(p)−2

)
(4.8)

xk(p) ∼
p→λ̂i

(xn+1(p) − λi)
−sk (4.9)

4.2 Branchpoints and conjugated points

From Riemann-Hurwitz, there are s+2g + s1 points αi on L, such that ∂x2Ê
(0)(x1, x2) = 0

and ∂x1Ê
(0)(x1, x2) 6= 0. They are called the x1 branch points. They are the zeros of the

differential dx1(p).

For the moment, we assume that the branch points are simple, i.e. that at those points

dx1(p) vanishes linearly when p → α. The spectral curve is said to be regular. A spectral

curve with non simple branch-points is called singular or critical. We study critical points

below in section 7.2.

Assuming that the spectral curve is regular means that near any branch-point α,

Y = c1,2x2 behaves locally like a square root Y (x1) ∼ Y (x1(α)) + C
√

x1 − x1(α), and

therefore, for any p in the vicinity of α, there exists a unique point p̄ 6= p in the same

vicinity of α, such that

x1(p̄) = x1(p). (4.10)

We say that p̄ is the conjugate point of p. The conjugate point, is defined locally near

every branch-point, and in general it is not defined globally (see [19]).
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4.3 Non-trivial cycles

If L is of genus g, there exists a symplectic basis of non-trivial cycles Ai,Bj, i, j = 1, . . . , g,

such that:

Ai ∩ Bj = δi,j , Ai ∩ Aj = 0 , Bi ∩ Bj = 0 (4.11)

Such a basis is not unique, and we have to choose one of them. Different choices give

different solutions of the loop equations. The choice is related to the choice of filling

fractions.

Changes of symplectic basis are called modular transformations, and, following [19, 22]

we study modular transformations of the Fg’s and W
(h)
0 ’s in section 7.3.

Once we have chosen a basis of non-trivial cycles, the domain L\(∪iAi ∪i Bi) is simply

connected and is called the fundamental domain.

4.4 Bergman kernel

We use the notations of [19], and we refer the reader to [19] for a more detailed description.

On every compact Riemann surface L, with a given symplectic basis of non trivial

cycles , is defined uniquely a 2nd kind differential called the Bergman kernel [2] B(p1, p2)

(which we regard as a 2nd kind differential in the variable p1 ∈ L), that satisfies

i) B(p1, p2) has a double pole, with no residue, when p1 → p2, and normalized such

that

B(p1, p2) ∼
p1→p2

dx(p1)dx(p2)

(x(p1) − x(p2))2
+ finite (4.12)

where x(p) can be any local parameter in the vicinity of p2.

ii)
∮

Ai

B(p1, p2) = 0.

It is easy to see that the Bergman kernel is unique, because the difference of 2 Bergman

kernels would have no pole and vanishing A−cycle integrals, i.e. it would vanish.

More explicitly we have:

B(p1, p2) = dp1 dp2 log (θ(u(p1) − u(p2) − κ)) (4.13)

where θ is the theta-function, u(p) is the Abel map, and κ is some odd characteristics.

For example, in the case the spectral curve has genus zero (the so-called 1-cut case),

L is the Riemann sphere, i.e. the complex plane with a point at ∞, and B(p1, p2) is the

meromorphic bilinear form B(p1, p2) = dp1 dp2

(p1−p2)2
. Another example is the case where L is

a torus of modulus τ : L = C/(Z + τZ), for which the Bergman kernel is the Weierstrass

function: B(p1, p2) = (℘(p1 − p2; τ) + C)dp1dp2.
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4.5 Third kind differential

For any p ∈ L and two points q and o in the fundamental domain, we define:

dSq,o(p) =

∫ q

o
B(p, q′) (4.14)

where the integration contour lies in the fundamental domain (i.e. it does not intersect any

A or B cycles). dSq,o(p) is a meromorphic differential form in the variable p, whereas it is

a scalar function of q and o. It has a simple pole at p = q with residue +1 and a simple

pole at p = o with residue −1:

Res
p→q

dSq,o(p) = +1 , Res
p→o

dSq,o(p) = −1 (4.15)

i.e. it behaves locally like dx(p)
x(p)−x(q) when p → q, in any local parameter x(p). Moreover it

has vanishing A cycle integrals: ∮

Ai

dSq,o = 0 (4.16)

Since it has only one simple pole in the variable q, this 3rd kind differential is very useful

for writing Cauchy residue formula. For any meromorphic differential form ω(p) we have:

ω(p) = −Res
q→p

dSq,o(p)ω(q) (4.17)

and, using Riemann bilinear identity [25, 26], if ∀i,
∮

Ai
ω = 0, and ω has poles αi’s, we may

move the integration contour and get:

ω(p) =
∑

i

Res
q→αi

dSq,o(p)ω(q) (4.18)

This identity was the main ingredient in solving loop equations for the 1-matrix model

in [16].

5 Solution of the loop equation

In this section we solve the loop equation to all orders in the topological T 2/N2 expansion.

We first need a technical lemma which consists in proving that the solution is unique,

and then we use this uniqueness to try a guess similar to that introduced in [9] which makes

the loop equations easier to solve.

We find the one point resolvent and the k point resolvent for the first matrix of the

chain, and in fact we find that they coincide with the correlators defined in [19] for the

spectral curve Ê(0).

5.1 Unicity of the solution

Equation (3.10) fixes the large N/T expansion of W0(x1(p)).4 Take equation (3.10) and

substitute the T 2

N2 expansion of Ŵ2;1(x1, x
′
1), W0(x1), Û(x1, x2) and Ê(x1, x2). Then to

4As we show later all the k-functions of the type

W
(h)

0;1k−1(x1(p), x1(q
(l)), . . . , x1(p

(l))) =

 

k−1
Y

l=1

∂

∂V ′

1(x1(q(l)))

!

W
(h)
0 (x1(p))

can be determined from the equation (3.10) exactly in the same way as in [9, 19]. . . .
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order T 2h

N2h we obtain

(c1,2x2 − Y (x1))Û
(h)(x1, x2) + W

(h)
0 (x1)Û

(0)(x1, x2) =

= Ê(h)(x1, x2) −
h−1∑

m=1

W
(h−m)
0 (x1)Û

(m)(x1, x2)−Ŵ
(h−1)
2;1 (x1, x2;x1).

(5.1)

Suppose you know Û (h′)(x1, x2), W
(h′)
0 (x1) and Ê(h′)(x1, x2) for h′ < h. We prove that we

can find those three functions for h′ = h. Consider x1 = x1(q) and x2 = x2(p) (and so

Y (x1(q)) = c1,2x2(q)) with p and q living on the algebraic curve

c1,2(x2(p) − x2(q)) Û (h)(x1(q), x2(p)) + W
(h)
0 (x1(q))Û

(0)(x1(q), x2(p)) =

= Ê(h)(x1(q), x2(p))−
h−1∑

m=1

W
(h−m)
0 (x1(q))Û

(m)(x1(q), x2(p))−Ŵ
(h−1)
2;1 (x1(q), x2(p);x1(q)).

(5.2)

Begin with h = 0. Consider the solutions for the equations Ê(x1(q), x2(p)) = 0. For

every x1(q) there are D2 + 1 different solutions Y (x1(q
(i))) (sitting at points that we call

q(0), q(1), . . . , q(D2) on the curve, with the convention that q(0) = q). Then we can write

Ê(0)(x1(q), x2(p)) = K

D2∏

i=0

(

c1,2x2(p) − Y (x1(q
(i)))

)

Û (0)(x1(q), x2(p)) =
Ê(0)(x1(q), x2(p))

(c1,2x2(p) − Y (x1(q)))
= K

D2∏

i=1

(
c1,2x2(p) − Y (x1(q

i))
)

(5.3)

where the constant K is derived in the next section. Recall that x1(q
(i)) = x1(q

(j)) but in

general5 Y (x1(q
(i))) 6= Y (x1(q

(j))) for i 6= j.

Consider now h > 0.

Write now the equation for an arbitrary h and take p → q0 = q

W
(h)
0 (x1(q))Û

(0)(x1(q), x2(q)) = Ê(h)(x1(q), x2(q))

−
h−1∑

m=1

W
(h−m)
0 (x1(q))Û

(m)(x1(q), x2(q)) − Ŵ
(h−1)
2;1 (x1(q), x2(q);x1(q)).

(5.4)

This equation shows (by recursion) that W
(h)
0 (x1(q)) is a meromorphic function on the

spectral curve, and because of our hypothesis, it has poles only at branch-points, and it

has vanishing A cycle integrals. Let us write Cauchy residue formula (4.17):

W
(h)
0 (x1(q))dx1(q) = − Res

q′→q
dSq′,o(q) W

(h)
0 (x1(q

′))dx1(q
′) (5.5)

5The function Y (x1(q
(i))) is multi valued in the x1 plane. On the other side on the algebraic curve it is

not multi valued. The index i indicates precisely different x1-sheets, and thus different values of Y (x1).
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Using Riemann bilinear identity, and the fact that both dS and W
(h)
0 dx have vanishing A

cycle integrals, we can move the integration contour and get (4.18):

W
(h)
0 (x1(q))dx1(q) =

∑

α

Res
q′→α

dSq′,o(q) W
(h)
0 (x1(q

′))dx1(q
′) (5.6)

Now we replace W
(h)
0 (x1(q

′)) in the r.h.s. with the loop equation 5.4, and using that

Ê(h)(x1, x2) is a polynomial and has no poles at finite x1, that Û (0)(x1(q), x2(q)) vanishes

at most as a square root at the branch points and that dx1(p) vanishes linearly at the

branchpoints, we find:

W
(h)
0 (x1(q))dx1(q) =

∑

α

Res
q′→α

W
(h)
0 (x1(q

′))dx1(q
′)dSq′,o(q) =

= −
∑

α

Res
q′→α

dx1(q
′)dSq′,o(q)

Û (0)(x1(q′), x2(q′))

(
h−1∑

m=1

W
(h−m)
0 (x1(q

′))Û (m)(x1(q
′), x2(q

′))

+ Ŵ
(h−1)
2;1 (x1(q

′), x2(q
′);x1(q

′))

)

.

(5.7)

where everything on the r.h.s. is known from the recursion hypothesis, and thus determine

uniquely W
(h)
0 (x1(q)).

Then, consider again equation (5.4) and find Ê(h)(x1(q), x2(q)) (equal to

Ê(h)(x1(q
(i)), x2(q)) by the definition of q(i))

Ê(h)(x1(q
(i)), x2(q)) = Ê(h)(x1(q), x2(q)) = W

(h)
0 (x1(q))Û

(0)(x1(q), x2(q))

−
h−1∑

m=1

W
(h−m)
0 (x1(q))Û

(m)(x1(q), x2(q)) − Ŵ
(h−1)
2;1 (x1(q), x2(q);x1(q))

(5.8)

and reconstruct Ê(h)(x1(q), x2(p)) using the Lagrange interpolation formula

Ê(h)(x1(q), x2(p)) =
∑

i

Ê(h)(x1(q), x2(q
(i)))

∏

j 6=i(x2(q
j) − x2(p))

∏

j 6=i(x2(qj) − x2(q(i)))
. (5.9)

Finally equation (5.2) gives Û (h)(x1(q), x2(p)).

Therefore we have proved our recursion hypothesis to order h.

All this procedure allows us to solve recursively the master loop equation, thus indi-

cating that the solution is unique once E(0)(x1, x2) (or equivalently Y (x1(p)) and x1(p)) is

given. We could iterate this procedure indefinitely. We now show a much better way to

solve the master loop equation.

5.2 Solution of the equation

The solution being unique, we only have to find one solution. The equation

T 2

N2
Ŵ2;1(x1, x2;x1)+(c1,2x2 − V ′

1(x1) + W0(x1))Û (x1, x2) =

= − Ŵ1(x1, x2) + (V ′
1(x1) − c1,2x2)Ŝ(x1, x2) = Ê(x1, x2)

(5.10)
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is indeed solved by the expressions

Ê(x1(p), x2) = −K”

〈
D2∏

i=0

(

c1,2x2 − V ′
1(x1(p)) +

T

N
tr

(
1

x1(p(i)) − M

))〉

”

Û(x1(p), x2) = −K”

〈
D2∏

i=1

(

c1,2x2 − V ′
1(x1(p)) +

T

N
tr

(
1

x1(p(i)) − M

))〉

”.

(5.11)

and can be proved following [9]. The product runs over the D2 + 1 sheets of the algebraic

curve viewed from the x1 variable point of view. The 0th sheet is by definition the sheet

in which the point p is sitting (that is, p = p(0)). The notation ” 〈· · ·〉 ” means that if we

expand the product in cumulants, the connected two point correlators must be replaced

by W 0;1(x1(p);x1(p
′)) = W0;1(x1(p);x1(p

′)) + 1
(x1(p)−x1(p′))2 .

These expressions are not of practical immediate use, but if we expand them in powers

of x2 they reveal the equation that lead us to the explicit solution. All the information is

contained in the highest powers.

• (c1,2x2)
D2+1:

(
1

c1,2

)d2···dns

(

g
(2)
d2+1

c2,3

)d3···dns(

g
(3)
d3+1

c3,4

)d4···dns

· · ·

(

g
(n)
dn+1

cn,n+1

)s

= K (5.12)

• (c1,2x2)
D2:

K

[

V ′
1(x1) − d3 · · · dns

c1,2g
(2)
d2

g
(2)
d2+1

]

= K

D2∑

i=0

(

V ′
1(x1(p)) −

〈
T

N
tr

(
1

x1(p(i)) − M

)〉)

V ′
1(x1) − d3 · · · dns

c1,2g
(2)
d2

g
(2)
d2+1

=

D2∑

i=0

Y (x1(p
(i)))

(5.13)

where we have defined as usual V ′
1(x1) − W0(x1(p

(i))) = Y (x1(p
(i)))

• (c1,2x2)
D2−1:

P (x1) − d3 · · · dns

c1,2g
(2)
d2

g
(2)
d2+1

(

V ′
1(x1) − (d3 · · · dns − 1)

1

2

c1,2g
(2)
d2

g
(2)
d2+1

−
c1,2g

(2)
d2−1

g
(2)
d2

)

=

=
1

2

D2∑

i6=j

(

Y (x1(p
(i)))Y (x1(p

(j))) +
T 2

N2
W 0;1(x1(p

(i)), x1(p
(i)))

)

(5.14)

where P (x1) = Polx1 V ′
1(x1)W0(x1) was already defined in (2.14) and

W 0;1(x1(p), x1(q)) = W0;1(x1(p), x1(q)) +
1

(x1(p) − x1(q))2
. (5.15)

refers to the substitution mentioned above for two point correlators.
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The equation (5.12) allows us to determine the constant K. The equation (5.13) allows us

to modify the last equation. When doing the T 2/N2 expansion, equation (5.13) implies

D2∑

i=0

W
(h)
0 (x1(p

(i))) = 0 for h > 0 (5.16)

Apply ∂
∂V1(x(q)) to equation (5.13) we find also

D2∑

i=0

W
(h)
0;1(x1(p

(i)), x1(q)) = δh,0
1

(x1(q) − x1(p))2
(5.17)

Using all these equations we find that equation (5.14) can be transformed into

D2∑

i=0

[

Y (x1(p
(i)))

2
+

T 2

N2
W0;1(x1(p

(i)), x1(p
(i)))

]

=

=
(
V ′

1(x1)
)2

− P (x1) − d3 . . . dns (d3 . . . dns − 2)

(

c1,2g
(2)
d2

g
(2)
d2+1

)2

− 2d3 · · · dns

c1,2
2g

(2)
d2−1

g
(2)
d2+1

(5.18)

Expanding the equation in T
N = ~ as in [9] we get for h ≥ 1 the equation (with y(p) =

Y (x1(p)))

2

D2∑

i=1

y(p(i))W
(h)
0 (x1(p

(i))) =

=

D2∑

i=1

h−1∑

m=1

W
(m)
0 (x1(p

(i)))W
(h−m)
0 (x1(p

(i)))+

D2∑

i=1

W
(h−1)
0;1 (x1(p

(i)), x1(p
(i)))+2P (h)(x1)

(5.19)

The rest follows exactly the same lines as in [9]. We will however recall the main steps.

Let us define the following meromorphic differentials from the correlation functions

ω
(h)
k (p1, . . . , pk) =





k∏

j=1

dx1(pj)





(
k∏

i=2

∂

∂V1(x1(pi))

)

W
(h)
0 (x1(p1)) (5.20)

and rewrite equation (5.19) as

2

D2∑

i=1

y(p(i))ω
(h)
1 (p(i))dx1(p

(i)) =

=

D2∑

i=1

h−1∑

m=1

ω
(m)
1 (p(i))ω

(h−m)
1 (p(i)) +

D2∑

i=1

ω
(h−1)
2 (p(i), p(i)) + 2P (h)(x1(p))dx1(p)2

(5.21)

Define also the third kind differential dEp,p̄(q) = dSp,o(q)− dSp̄,0(q), where p̄ is the conju-

gated point of p. Finally apply the operator
∑

α Resp→α
1
2

dEp,p̄(q)
y(x1(p))−y(x1(p̄)) (where α are the
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branch points of the curve) to the equation (5.20). After some algebra we find

ω
(h)
1 (q) = −

∑

α

Res
p→α

1

2

dEp,p̄(q)

(y(p) − y(p̄))dx1(p)

(
h−1∑

m=1

ω
(m)
1 (p)ω

(h−m)
1 (p̄) + ω

(h−1)
2 (p, p̄)

)

(5.22)

which is the first of a tower of recursion relations. The rest can be obtained by applying

the loop insertion operator to this first one and reads

ω
(h)
k+1(q, {pK}) = −

∑

α

Res
p→α

1

2

dEp,p̄(q)

(y(p) − y(p̄))dx1(p)

(

ω
(h−1)
k+2 (p, p̄, {pK})

+

h∑

m=0

∑

J⊂K

ω
(m)
j+1(p, {pJ})ω

(h−m)
k+1−j(p̄, {pK\J})

) (5.23)

where {pK} is a collective notation for k points on the curve, and K = {1, . . . , k} is the

set of indices. In the expression, J stands for a subset of j elements of K, K\J for the

complement of J in K and the sum over J and m counts all different subsets and genus,

except (J,m) = (∅, 0) and (J,m) = (K,h).

Therefore we have found that the meromorphic differentials ω
(h)
k (q1, . . . , qk) satisfy

exactly the same recursion structure as those of [19], thus all manipulations done in [19]

and other references therein that depend only on this resursion structure need not be

repeated here and can be taken as a fact. For instance it was shown in [19] that the

recursion for the Fg’s and W
(g)
n ’s can be represented digrammaticaly, and so the same

happens here.

6 Moduli of the chain of matrices and topological expansion of the free

energy

In order to find the free energy it is important to understand which are the moduli of

the chain of matrices, and how they change when we change the curve (always within the

matrix chain moduli space).

6.1 Moduli of the chain of matrices

The chain of matrices is completely characterized by the potentials V1(x), . . . , Vn(x), the

interaction parameters ci,i+1,
6 the temperature parameter T , the eigenvalues and multi-

plicities of Λ and the filling fractions ǫi.

It is clear that we can express all these parameters in terms of the meromorphic

functions on the curve x1(p), . . . , xn(p) as follows (with notations borrowed from [4, 5, 19]):

ǫi =
1

2πi

∮

Ai

c1,2x2dx1 =
1

2πi

∮

Ai

ck,k+1xk+1dxk = −
1

2πi

∮

Ai

ck,k+1xkdxk+1

t∞ = T = Res
∞

c1,2x2dx1 = Res
∞

ck,k+1xk+1dxk = −Res
∞

ck,k+1xkdxk+1

6Note that cn,n+1 can be absorbed in a redefinition of Λ. We will see later how this appears in the

moduli variations.
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tλ̂i
= −

li
N

T = −Res
λ̂i

cn,n+1xndxn+1 = −Res
λ̂i

ck,k+1xkdxk+1

= Res
λ̂i

ck,k+1xk+1dxk = Res
λ̂i

c1,2x2dx1

g
(1)
j = c1,2 Res

∞
x−j

1 x2dx1

j > 2 : g
(k)
j = ck,k+1 Res

∞
x−j

k xk+1dxk = ck−1,k Res
λ̂i

x−j
k xk−1dxk ∀i

tλ̂i
λi = −tλ̂i

xn+1(λ̂i) = −cn,n+1 Res
λ̂i

xn+1(p)xn(p)dxn+1(p) (6.1)

Something deserves attention here: note that g
(k)
j can be expressed in s + 1 different ways

by changing which pole λ̂i or ∞ we consider. As we will see later, in order to stay within the

matrix chain moduli space, any variation of the curve around one of these points should

bring associated other variations around the other points so that the new g’s can still

be obtained from any of them. Also note that we have not specified how to obtain ci,i+1.

They appear in the other equations as to indicate that they are free to choose. Indeed these

parameters can always be absorbed into the other parameters of the model (as the equations

above indicate). It can also be viewed as a rescaling of the meromorphic functions xi(p).

Now, we study how the spectral curve changes when we change these parameters (or

vice versa).

Let us define the variations Ω of the curve by their effect on the differential

c1,2x2(p)dx1(p). Variations of functions or forms, are defined with respect to some fixed

variable. There is a Poisson-like structure (thermodynamic identity) indicating how to

relate variations with respect to different fixed parameters. The meromorphic form Ω is

defined as:

δΩ (c1,2x2(p)dx1(p))|x1(p) = δΩ(c1,2x2(p))|p dx1(p)− δΩ(x1(p))|p c1,2dx2(p) = −Ω(p) (6.2)

In general we want Ω to be written in the form

Ω(p) =

∫

∂Ω
B(p, q)Λ(q) (6.3)

where ∂Ω is a path which does not intersect circles around branch points.

6.2 Variation of filling fractions

For variations of the filling fractions we choose

Ω(p) = −2iπduj(p) = −

∮

Bj

B(p, q) (6.4)

so that ∂Ω = Bj and Λ(q) = −1. From (6.1) we have

δΩǫl = δjl , δΩtα = 0 , δΩg
(m)
j = 0 , δΩλi = 0 (6.5)

so that indeed, δ−2iπduj
= ∂

∂ǫj
. Using Theorem 5.1 in [19] we can write

∂

∂ǫj
w

(h)
k (p1, . . . , pk) = −

∮

Bj

w
(h)
k+1(p1, . . . , pk, q) (6.6)
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6.3 Variation of the temperatures

Similarly we define for t∞ ≡ T and tλ̂i
,

Ω(p) = −dSα,α′ =

∫ α′

α
B(p, q), i.e. δΩ = [α,α′],Λ = 1 (6.7)

where α,α′ ∈ {∞, λ̂1, . . . , λ̂s}. This variation produces the following modifications of pa-

rameters

δΩǫl = 0 , δΩtβ = δα,β − δα′,β , δΩg
(m)
j = 0 , δΩλi = 0 (6.8)

which can be written as δ−dSα,α′
= ∂

∂tα
− ∂

∂t′α
. This makes sense since

∑

α tα = 0. Again

Theorem 5.1 in [19] enables us to write

(
∂

∂tα
−

∂

∂t′α

)

w
(h)
k (p1, . . . , pk) =

∫ α′

α
w

(h)
k+1(p1, . . . , pk, q) (6.9)

6.4 Variation of the potentials

Observe that if we don’t consider variations in ci,i+1 we have

c1,2(δx2.dx1 − δx1.dx2) =δx2.(V
′′
2 (x2)dx2 − c2,3dx3)

− ((δV ′
2)(x2).dx2 + V ′′

2 (x2)δx2.dx2 − c2,3δx3.dx2)

= − (δV ′
2)(x2).dx2 + c2,3(δx3.dx2 − δx2.dx3)

...

= − (δV ′
2)(x2).dx2 − · · · − (δV ′

n)(xn).dxn

+ cn,n+1(δxn+1.dxn − δxn.dxn+1)

(6.10)

In particular, if the λi are kept fixed, the last term δxn+1.dxn−δxn.dxn+1 has no pole at λ̂i.

Variations of V1. If we vary only V1, more precisely if we vary only g
(1)
j , we see that

Ω = c1,2(δx1.dx2 − δx2.dx1) has no pole at the λ̂i’s, and near ∞, if we work at fixed x1,

we have c1,2δx2 ∼ δg
(1)
j xj−1

1 + O(x−2
1 ), and in addition, since we don’t vary the filling

fractions, we know that
∮

Ai
Ω = 0. All these considerations imply that the variations of

V1(x) are given by the same formulas as in [9]:

Ω(p) = −B∞,j(p) =
1

j
Res
q→∞

B(p, q)xj
1(q) (6.11)

thus δΩ is a small circle around ∞ and Λ(q) = 1
2iπ

x1(q)j

j . With this variation it is easy to

check that

δΩǫl = 0 , δΩtα = 0 , δΩg(k)
m = δk,1δj,m , δΩλi = 0 (6.12)

and so we can say that δ−B∞,j
= ∂

∂g
(1)
j

, and from Theorem 5.1 in [19]:

∂

∂g
(1)
j

w
(h)
k (p1, . . . , pk) = Res

∞

x1(q)
j

j
w

(h)
k+1(p1, . . . , pk, q). (6.13)
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Variations of V2, . . . , Vn. For the other potentials Vk with 2 ≤ k ≤ n, if we vary g
(k)
j ,

near ∞, at fixed x1, we have δx2 = c1,2δ(V
′
1(x1) − T/x1 + O(x−2

1 )) = O(x−2
1 ), therefore Ω

has no pole at ∞. We have seen that the pole of Ω at λ̂i is given by δ(V ′
k)(xk)dxk, therefore

near λ̂i we have Ω ∼ −xj−1
k dxk. This implies that

Ω(p) = −
∑

i

Bλ̂i,k,j(p) = −
1

j

∑

i

Res
q→λ̂i

B(p, q)xj
k(q) (6.14)

thus ∂Ω is a contour which surrounds all λ̂i (and no other poles), and Λ(q) = − 1
2iπ

xk(q)j

j .

Then, we can say that δ−
P

i B
λ̂i,k,j

= ∂

∂g
(k)
j

, and from Theorem 5.1 in [19]:

∂

∂g
(k)
j

w
(h)
l (p1, . . . , pl) =

∑

i

Res
λ̂i

xk(q)
j

j
w

(h)
l+1(p1, . . . , pl, q). (6.15)

6.5 Variation of the λi’s

Similarly, we see that when we vary λi, Ω has no pole at ∞, and near λ̂i, it behaves like

−dxn. Therefore we have:

Ω(p) = T
li
N

Bλ̂i
(p) = Res

q→λ̂i

B(p, q)xn(q) = T
li
N

B(p, λ̂i)

dxn+1(λ̂i)
(6.16)

∂

∂λi
w

(h)
l (p1, . . . , pl) = T

li
N

Res
λ̂i

w
(h)
l+1(p1, . . . , pl, q)xn(q) . (6.17)

6.6 Variation of the ck,k+1

Again, allowing variations in ck,k+1 we find that Ω behaves like xkdxk+1, therefore

Ω(p) =
∑

i

Bλ̂i,k→k+1 =
∑

i

Res
λ̂i

B(p, q)xk(q)xk+1(q) (6.18)

∂

∂ck,k+1
w

(h)
l (p1, . . . , pl) =

∑

i

Res
λ̂i

w
(h)
l+1(p1, . . . , pl, q)xk(q)xk+1(q) . (6.19)

6.7 Summary of moduli

Using Cauchy formula, we may write:

c1,2x2(p)dx1(p) = −Res
q→p

dSq,o(p) c1,2x2(q)dx1(q) (6.20)

Then, we move the integration contour, and we take into account the boundary terms using

Riemann bilinear identity, we get:

c1,2x2(p)dx1(p) = Res
q→∞,λ̂i

dSq,o(p) c1,2x2(q)dx1(q) + 2iπ
∑

i

ǫidui(p) (6.21)

The residues near the poles ∞ and near the λ̂i are computed by the local behaviors.
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• near ∞, we have x2 ∼ V ′
1(x1) −

T
x1

+ O(x−2
1 ), i.e.

Res
q→∞

dSq,o(p) c1,2x2(q)dx1(q) = Res
q→∞

dSq,o(p) dV1(x1(q)) − T Res
q→∞

dSq,o(p)
dx1(q)

x1(q)

= − Res
q→∞

B(q, p)V1(x1(q)) + TdS∞,o(p)

= −
∑

j

g
(1)
j

j
Res
q→∞

B(q, p) (x1(q))
j + TdS∞,o(p)

=
∑

j

g
(1)
j

j
B∞,j(p) + TdS∞,o(p)

(6.22)

• near λ̂i, we have

c1,2x2dx1 = c1,2(d(x1x2) − x1dx2) = c1,2d(x1x2) − V ′
2(x2)dx2 + c2,3x3dx2

...

= d(c1,2x1x2 − V2(x2) + c2,3x2x3 − V3(x3) . . .

+ cn−1,nxn−1xn − Vn(xn) + cn,n+1xnxn+1) − cn,n+1xndxn+1

∼ d(c1,2x1x2 − V2(x2) + c2,3x2x3 − V3(x3) . . .

+ cn−1,nxn−1xn−Vn(xn)+cn,n+1xnxn+1)−T
li
N

dxn+1

xn+1 − λi
+ O (1)

(6.23)

Therefore we have:

Res
q→λ̂i

dSq,o(p) c1,2x2(q)dx1(q) =

= −T
li
N

dSλ̂i,o
(p) − Res

q→λ̂i

dSq,o(p) d(V2 + · · · + Vn − c1,2x1x2 − · · · − cn,n+1xnxn+1)

= −T
li
N

dSλ̂i,o
(p) + Res

q→λ̂i

B(q, p) (V2 + · · · + Vn − c1,2x1x2 − · · · − cn,n+1xnxn+1)

= −T
li
N

dSλ̂i,o
(p)+

n∑

k=2

∑

j

g
(k)
j

j
Res
q→λ̂i

B(q, p) (xk(q))
j−

n∑

k=1

ck,k+1 Res
q→λ̂i

B(q, p)xk(q)xk+1(q)

(6.24)

All this can be summarized as:

c1,2x2dx1 =2iπ
∑

i

ǫidui +
∑

i

T li
N

dS∞,λ̂i
+
∑

j

g
(1)
j B∞,j +

n∑

k=2

∑

j

g
(k)
j

∑

i

Bλ̂i,k,j

+
∑

i

T li
N

λiBλ̂i
+

n−1∑

k=1

ck,k+1

∑

i

Bλ̂i,k→k+1

(6.25)

Notice that cn,n+1 does not appear, in fact the term that would logically give the

associated contribution, it is better used to encode the variations of λi. It is clear that the

λi contain already the information of cn,n+1.

– 22 –



J
H
E
P
0
7
(
2
0
0
9
)
0
9
6

6.8 Topological expansion of the free energy

With all that information we are now ready to derive the free energy F (g). The free energy

ln Z = F =
∑

g(N/T )2−2gF (g), is determined by its derivatives:

1

j
< Tr (Mk)j >= −

∂F

∂g
(k)
j

. (6.26)

The result that we wish to prove is that:

F (g) = Fg(Ê
(0)) (6.27)

where Fg’s are the symplectic invariants of [19], for the spectral curve Ê(0). In particular

for g ≥ 2 we have:

Fg(Ê
(0)) =

1

2 − 2g

∑

α

Res
α

w
(g)
1 Φ, dΦ = c1,2x2dx1 (6.28)

The expressions of F0 and F1 are a little bit more difficult to write [31, 34], and we refer

the reader to [19]. Notice that when there is no external field, i.e. Λ = 0, F (0) was already

computed in [15], and it coincides with F0.

The Fg’s of [19] have the property, that under any variation Ω, we have:

δFg =

∫

∂Ω
w

(g)
1 (q)Λ(q) (6.29)

In particular with k = 1, it proves that

∂Fg

∂g
(1)
j

=
1

j
Res
∞

w
(g)
1 xj

1 =
∂F (g)

∂g
(1)
j

(6.30)

Then, we prove it by recursion on the length of the chain n.

The n = 1 case was done in [19]. Now, assume that it is true for n − 1.

We have just seen that F (g) − Fg is independent of V1, therefore we may compute

it for the case where V1 is quadratic. When V1 is quadratic, the integral over the first

matrix of the chain, M1, is a gaussian integral, and M1 can be integrated out, so that

when V1 is quadratic we are left with a chain of n − 1 matrices, and we get F
(g)
n = F

(g)
n−1.

From the recursion hypothesis, we have F
(g)
n−1 = Fg(Ê

(0)(x2, x3)), and one should notice

that the Fg’s of [19] have the symplectic invariance property, i.e. they are unchanged if

we make a symplectic transformation of the spectral curve, or in other words, if we add

an exact differential to c1,2x2dx1. In particular we may work with c2,3x3dx2, and thus

Fg(Ê
(0)(x1, x2)) = Fg(Ê

(0)(x2, x3)). This proves the result.

7 Other considerations

In the previous two sections, we have solved the loop equations to all orders, and we have

found that the solution is given by the symplectic invariants introduced in [19], for the

spectral curve Ê(0)(x1, x2). As a consequence, all the properties studied in [19] apply.
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7.1 Symplectic transformations

Remember that the spectral curve Ê(x1, x2) = 0 is equivalently given by the data of two

meromorphic functions x1(p), x2(p) on L. Indeed, given two meromorphic functions, it

is always possible to find a polynomial relationship between them. We shall write the

spectral curve:

Ê1,2 = {(x1(p), x2(p)) / p ∈ L} = (x1, x2) (7.1)

Since any xi is a meromorphic function, we can also define the following algebraic spectral

curves:

Êi,j = {(xi(p), xj(p)) / p ∈ L} = (xi, xj) (7.2)

It was found in [19, 20], that the Fg’s are unchanged under symplectic transformations

of the spectral curve, for instance if we add to x1 any rational function of x2, or if we

exchange x1 ↔ x2, or if we change x1 → −x1.

For instance we could change c1,2x1 → c1,2x1 −V ′
2(x2) = −c2,3x3, and then x3 → −x3,

and then recursively ci,i+1xi → ci,i+1xi − V ′
i+1(xi) = −ci+1,i+2xi+2. This shows that:

Fg = Fg(Êi,i+1) = Fg(Êi+1,i) ∀ 1 ≤ i ≤ n (7.3)

However, one should keep in mind that the correlation functions are not conserved

under symplectic transformations, only the Fg’s are.

7.2 Double scaling limits

We have seen that as long as the spectral curve is regular (all branch-points are simple),

the Fg’s and all correlation functions can be computed, and it was found in [19] that they

diverge when the curve becomes singular. This type singularities were already found in the

one and two matrix model, and in [19] for generic spectral curves, but it is still important

to show that it appears in this context too.

It was found in [19], that if the spectral curve depends on some coupling constant (T

for instance), if the spectral curve develops a cusp singularity at say T = Tc of the form

y ∼ xp/q (7.4)

then the Fg’s diverge as

Fg ∼

(

1 −
T

Tc

)(2−2g) p+q

p+q−1

F̃g (7.5)

where F̃g = Fg(Ẽ) are the symplectic invariants of another spectral curve Ẽ which is the

blow up of the vicinity of the singularity, and which is the spectral curve of the (p, q)

minimal model [11, 29]. All this is detailed in [19] and we refer the reader to that article

for more details.

As usual, singularities of formal series are related to the large order asymptotic expan-

sion of the general term of the series [13], and the double scaling limit is thus related to the

asymptotic enumeration of large discrete surfaces, and in some sense to their continuous

limit, i.e. Riemann surfaces. A (p, q) minimal model may occur as soon as two of the Vi’s
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have degree larger than p and q [11]. Here, we see that the double scaling of the chain

of matrices describes a (p, q) minimal model on a random lattice. This is related to the

Liouville conformal field theory coupled to minimal models (p, q). This phenomenon is

expected [11, 13, 30, 32] and is already known to be present in the one and two matrix

models and more generaly in [19].

7.3 Modular transformations and holomorphic anomaly equations

In order to compute the Fg’s and the solution of loop equations, we have made a choice of

cycles Ai, related to the choice of the minimum around which the formal matrix integral

is defined. However, it is interesting to see what happens if one makes a different choice of

cycles, i.e. if one makes a modular transformation. This was studied in [19] and [22].

A modular transformation changes the Bergman kernel B(p, q) with a constant sym-

metric matrix κ:

B(p, q) → B(p, q) + 2iπ
∑

i,j

κi,j dui(p)duj(q) (7.6)

where dui are the holomorphic forms on L such that
∮

Aj
dui = δi,j .

In particular, if

κ =
i

2
(ℑτ)−1 (7.7)

(where τi,j =
∮

Bj
dui is the Riemann matrix of periods of L) then the Bergman kernel is

called Schiffer kernel and is modular invariant.

More generally, the modular transformations were computed in [19], and they sat-

isfy the so-called holomorphic anomaly equations, and that gives a strong support to the

Dijkgraaf-Vafa conjecture that matrix models are topological type B string theory partition

functions [3, 22].

7.4 Convergent matrix integrals and filling fractions

So far, we have considered formal matrix integrals, defined by expanding the integrand in

the matrix integral, near a given extrema specified by a set of filling fractions. We worked

at fixed filling fractions.

On the other hand, convergent matrix integrals should correspond to integrals over

(HN )n. The integration path can always be written as a linear combination of steepest

descent paths (those used for formal integrals), and the full convergent matrix integral is

obtained as a linear combination of formal matrix integrals. More precisely, the convergent

matrix integral should be a sum over filling fractions of the formal ones.

The summation over filling fractions was computed in [21], and just amounts to multi-

plication of the formal matrix integrals by a theta function. We refer the reader to [6, 21]

for more details.

8 Limit of a continuous chain of matrices

In this section, we briefly explore some consequences of our method for the continuous

chain of matrices.

– 25 –



J
H
E
P
0
7
(
2
0
0
9
)
0
9
6

The “matrix-model quantum mechanics”, is obtained [14] as the limit n → ∞, and

with the choice: ci,i+1 = 1
ǫ , and:

ci,i+1 =
1

ǫ
, V1(x) = ǫV(x, ǫ) +

x2
1

2ǫ
, Vi(x) = ǫV(x, ǫi) +

x2
i

ǫ
(8.1)

The index i is rescaled as a continuous time t = ǫi:

t = ǫi , 0 ≤ t ≤ tf = ǫn (8.2)

The matrix integral thus becomes:

Z =

∫

D[M(t)] e−
N
T

R tf
0 dt Tr[V(M(t),t)+ 1

2
Ṁ(t)2] (8.3)

The spectral curve is determined by the equations V ′
i (xi) = ci,i+1xi+1 + ci,i−1xi−1 which

become Newton’s equation of motion [14] to leading order in ǫ:

V ′(x, t) = ẍ(t) (8.4)

and the resolvent of the first matrix is:

W (x, 0) = V ′
1(x1) − c1,2x2 ∼ −ẋ(0) (8.5)

The topological expansion is thus:

Z = e
P

g(N/T )2−2gFg (8.6)

Fg = Fg(E(t)) , E(t) = (x(t),−ẋ(t)) (8.7)

The spectral curve E(t) = (x(t),−ẋ(t)) is thus the dispersion relation, i.e. the relationship

between velocity and position, it may depend on the time t, but from symplectic invariance,

we see that Fg(E(t)) is a conserved quantity, independent of the time t.

For example, if the potential V(x, t) = V(x) is independent of t, the kinetic energy K

is conserved and the dispersion relation is:

1

2
ẋ2 − V(x(t)) = K (8.8)

and the spectral curve is:

E(t) = (x(t),
√

2(V(x(t)) + K)) (8.9)

Consequences of those relations need to be further explored, and we leave the contin-

uous chain of matrices for another work.

9 Conclusion

We have computed explicitly the topological expansion of the chain of matrices with an

external field, and we have found that the Fg’s are precisely the symplectic invariants of [19].

We have also computed some of the correlation functions, but not all of them, in par-

ticular we have not computed mixed traces (which count discrete surfaces with non-trivial

boundary conditions). Mixed traces were computed in the 2-matrix model case in [17, 20],

and it would be interesting to see how that could be extended to the chain of matrices.

We have also briefly started to explore the limit of matrix quantum mechanics, i.e. the

limit of an infinite chain of matrices, but this topic needs to be studied in deeper details.
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